Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors.

نویسندگان

  • Neil S Forbes
  • Lance L Munn
  • Dai Fukumura
  • Rakesh K Jain
چکیده

Blood-borne therapeutics, which rely on diffusion and convection for delivery, often do not accumulate in effective concentrations distant from vasculature and are therefore unable to eradicate all cells within a tumor. Motile bacteria have the potential to overcome the diffusion and pressure gradients that prevent passive materials from penetrating into poorly perfused regions of tumors. Here, we test several proposed mechanisms of Salmonella typhimurium accumulation in tumors, including: (a) entrapment in the chaotic vasculature of tumors; (b) attraction to specific tumor microenvironments; and (c) preferential replication within specific microenvironments. After systemic injection of S. typhimurium into tumor-bearing mice, we used intravital microscopy and histological techniques to quantify their interaction with tumor vasculature. Immediately after injection, few S. typhimurium (<4 in 10,000) adhered to tumor vasculature; most remained passively suspended in the blood. Despite this low initial adhesion, approximately 10,000-fold more S. typhimurium accumulated in tumors than any other organ 1 week after the injection, thus demonstrating their specificity. However, within the tumors, we found that most bacteria were located in necrotic tissue as large colonies far (750 micro m) from functional vasculature. Together, these results suggest that S. typhimurium has limited ability to adhere to tumor vasculature and migrate within tumors and only survives in tissue that becomes necrotic. Although S. typhimurium is a promising delivery vehicle because of its tumor specificity, increasing its intra-tumoral motility should improve its therapeutic effectiveness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Tumor Growth Using Salmonella Expressing Fas Ligand

Intravenous administration of bacteria leads to their accumulation in tumors and to sporadic tumor regression. We therefore explored the hypothesis that Salmonella typhimurium engineered to express the proapoptotic cytokine Fas ligand (FasL) would exhibit enhanced antitumor activity. Immunocompetent mice carrying tumors derived from syngeneic murine D2F2 breast carcinoma or CT-26 colon carcinom...

متن کامل

Solid tumors provide niche-specific conditions that lead to preferential growth of Salmonella

Therapeutic attenuated strains of Salmonella Typhimurium target and eradicate tumors in mouse models. However, the mechanism of S. Typhimurium for tumor targeting is still poorly understood. We performed a high-throughput screening of single-gene deletion mutants of S. Typhimurium in an orthotopic, syngeneic murine mammary model of breast cancer. The mutants under selection in this system were ...

متن کامل

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

OBJECTIVE With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium...

متن کامل

Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis.

The effectiveness of most chemotherapeutics is limited by their inability to penetrate deep into tumor tissue and their ineffectiveness against quiescent cells. Motile Salmonella typhimurium, which are specifically attracted to compounds produced by quiescent cancer cells, could overcome this therapeutic barrier. We hypothesized that individual chemoreceptors target S. typhimurium to specific t...

متن کامل

Phenotypic Evolution of Therapeutic Salmonella enterica Serovar Typhimurium after Invasion of TRAMP Mouse Prostate Tumor

Salmonella has been of interest in cancer research due to its intrinsic ability to selectively target and colonize within tumors, leading to tumor cell death. Current research indicates promising use of Salmonella in regular administrations to remove tumors in mouse models while minimizing toxic side effects. However, selection of mutants during such long-term tumor colonization is a safety con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 63 17  شماره 

صفحات  -

تاریخ انتشار 2003